Methodology for long-term prediction of time series

نویسندگان

  • Antti Sorjamaa
  • Jin Hao
  • Nima Reyhani
  • Yongnan Ji
  • Amaury Lendasse
چکیده

In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information (MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward elimination (or pruning) and forward–backward selection is introduced. This methodology is used to optimize the three input selection criteria (k-NN, MI and NNE). The methodology is successfully applied to a real life benchmark: the Poland Electricity Load dataset. r 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Dynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain

Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...

متن کامل

Sunspot series prediction using adaptive identification

In this paper a parallel and adaptive methodology for optimizing the time series prediction using System Identification is shown. In order to validate this methodology, a set of time series based on the sun activity measured during the 20th century have been used. The prediction precision for short and long term improves with this technique when it is compared with the found results using Syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2007